ProtoDUNE-SP, measurements/analysis meeting 13/10/2016

Stopping Kaon Selection

Anselmo Cervera, M. Sorel

IFIC-Valencia

Introduction

- Look at fully simulated/reconstructed K+ events in ProtoDUNE
 - ullet Of relevance for p ullet $\overline{\mathbf{v}}$ K+ search in DUNE FD
 - Motivation: design event selection and optimise beam settings for maximising number of stopping kaons in ProtoDUNE
- Use HighLAND framework to do the analysis

HighLAND analysis framework

- Highly optimized, thread safe, compiled c++ code and run on the shell command line (not as root macro)
- It provides:
 - Tools for multiple simultaneous event selections and systematic error propagation
 - Tools for drawing the analysis results
 - Data reduction functionality
 - Tools for incorporating specific analyses into the framework
 - Extensible event model and hierarchy of analyses
- Presented several times at the CM and several WG meetings

FIGHLAND PSYCHE

analysis flow

Documentation

Documentation has been updated at

https://cdcvs.fnal.gov/redmine/projects/highland/wiki

 It includes now much more information, with a link to the Doxygen documentation

Reminder: installation

This is an screen capture of

https://cdcvs.fnal.gov/redmine/projects/highland/wiki/install

 Please try, and if you have any problems email me (acervera@ific.uv.es) or submit an issue to redmine

https://cdcvs.fnal.gov/redmine/projects/highland/issues

ProtoDUNE example

- Highland could be specially useful for ProtoDUNE
 - Given the time constraints
 - Suitable for both prototypes
 - The same analysis could be performed in both prototypes, facilitating the comparisons
- An example have been committed to the git repository: protoDuneAnalysisExample package:
 - stoppingKaonSelection
 - dEdxCorrection, dEdxVariation (systematic)
- The new selection is being used for proton decay related studies and to optimize the beam momentum for kaons

See Michel Sorel NDK talk at last CM

Event Selection

- A selection is a collection of steps (cuts or actions)
- Each selection inherits from SelectionBase, which has a main mandatory method DefineSteps

```
void stoppingKaonSelection::DefineSteps(){
stoppingKaonSelection
 // Steps must be added in the right order
 // if "true" is added to the constructor of the step,
 // the step sequence is broken if cut is not passed (default is "false")
 AddStep(StepBase::kCut,
                         "> 0 tracks",
                                            new AtLeastOneTrackCut());
 AddStep(StepBase::kAction, "find true vertex",
                                            new FindTrueVertexAction_proto());
 AddStep(StepBase::kAction, "find main track",
                                            new FindMainTrackAction());
 AddStep(StepBase::kAction, "find vertex",
                                            new FindVertexAction()); // action from duneExampleAnalysis package
                         "kaon range",
 AddStep(StepBase::kCut,
                                            new KaonRangeCut());
 AddStep(StepBase::kCut,
                         "> 1 track",
                                            new MoreThanOneTrackCut());
                         "PIDA",
 AddStep(StepBase::kCut,
                                            new PIDACut());
```

Each step inherits from StepBase and implements the

method **Apply**

Results for 1 GeV/c kaons from MCC7

Track multiplicity

- About 95% of events have at least one reconstructed track
- 1-4 reconstructed tracks is typical
- When >0 tracks, color indicates true particle associated with kaon candidate track in the event (see next)


```
draw.SetTitleX("number of tracks");
draw.Draw(default, "ntracks", 15,0,15, "particle", "accum_level>-1", "HIST", "DRAWALLMC PUR");
```

Kaon candidate track

- Kaon candidate track defined as track starting most upstream (lowest z)
- With this definition, kaon candidate associated to true kaon only ~50% of the times
 - Partly because kaon decays or interacts before reaching the active volume (z>0) in ~30% of the simulated events

Fraction of stopping kaons and range cut

- Only ~10% of the events have a kaon stopping in the active volume
- Require ~200 cm range tracks to select all correctly reconstructed kaons decaying at rest

Multiplicity cut

- In addition to track range, >1 track requirement further improves kaon decay at rest selection
- Reason: tracks from kaon daughters are expected

The PIDA variable

Averaged over all hits with residual range R<30

before cuts

$PIDA = \langle A_i \rangle = \langle (dE/dx)_i R_i^{0.42} \rangle$

The recomputed PIDA is narrower, why? We think it is because we have used all 3 wire planes, while the one in the AnaTree only use one

The PIDA cut

recomputed PIDA after range and >1 track cuts

Efficiency and purity


```
// Create a data sample instance with the micro-tree file.
// Needed to plot efficiency (from truth tree) and purity (from default tree) simultaneously
DataSample mc("test.root");

// kaon selection Efficiency and purity after each cut
draw.SetTitleY("kaon selection eff & purity");
draw.DrawEffPurVSCut(mc,"true_signal==1");
```

Other kaon momenta

1.5, 2, and 3 GeV/c

Samples

- Samples produced by Elizabeth (thanks !!!):
 - 1.5, 2 and 3 GeV/c
 - 1000 events each
- Motivation:
 - Found optimal beam setting since we know there are no kaons arriving to the detector at 1GeV/c, while there are at 2 GeV/c and it does not increase much at 3 GeV/c

Positive Hadron Beam:

P (GeV/c)	# Spills	e*	K+	μ*	Р	π+	# Triggers	Beam time (days)
1	20K	672K	~0	3K	192K	144K	1M	5.6
2	20K	480K	8K	21K	336K	480K	1.3M	5.6
3	20K	760K	8K	8K	101K	321K	1.2M	5.6
4	20K	559K	25K	16K	99K	501K	1.2M	5.6
5	20K	448K	32K	8K	104K	608K	1.2M	5.6
6	20K	334K	50K	7K	121K	689K	1.2M	5.6
7	20K	251K	55K	12K	129K	753K	1.2M	5.6

Track multiplicity

Fraction of kaons decaying

Kaon kandidate Range

- It seems that 2 and 3 GeV are decaying at rest at a fixed range, but the end process tells us that the kaon undergoes an inelastic interaction
- Plots for |range-235|<20 (peaks in previous slide)
- Could it be interactions in the cathode?

- Plots for |range-235|<20
- I guess the peak at 360 mm corresponds to the cathode

Summary

- It seems that there are no kaons decaying at rest above 1.5 GeV/c
 - Is this what we expect from first principles? Notice that from 1 to 1.5 GeV makes a difference for a particle with 0.5 GeV mass
- Should we look at lower energies: between 1 and 1.5 GeV/c?
- Do we expect a significant amount of kaons arriving to the detector at those energies?

Additional studies with highland

Corrections

- Correct a well known data MC difference to reduce the corresponding systematic
- Example: dEdxCorrection

Scales the dEdx of each hit by the correction factor and

recomputes PIDA

data/dEdx.dat

bins of	PDG	correction	error on correction
10	12	0.95	0.02
12	14	0.98	0.02
320	322	0.9	0.02
2211	2213	0.8	0.02
210	212	0.9	0.02

Systematics

- full systematic propagation functionality is one of the main HighLAND benefits
- Systematic are propagated numerically by multiple throws (toy experiments)
- Two type of systematics:
 - Event Variations: Modify the input data
 - Event Weights: Just a global weight for the event

dEdxVariation systematic

- The error on the correction is the systematic
- 100 toy experiments. Each toy applies a different correction factor to all hits. Then PIDA is recalculated

Effect on the selection

- When the PIDA cut is applied the dEdx systematic has an effect on the number of selected events
 - Integrated: 0.3%
 - Differential: < 3%</p>

for events passing all cuts, including PIDA

